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Based on analytical considerations, we introduce criteria that enable us to encapsulate the parameter domains
for which chaotic synchronization in linearly coupled map systems may be attained. Our aim is to provide
means to readily determine parameter regions which preclude synchronization. This results in a significant
reduction of parameter space that one needs to explore. Our findings hold for both identical and quasi-identical
(small parameter mismatch) maps subjected to unidirectional and bidirectional coupling. As a testing ground
we present numerical calculations for the logistic and cubic maps which validate the predictive capability of
our approach. Our main contribution relies on the applicability of one of our criteria to experimental situations.
Since in real life it is almost impossible to construct two truly identical systems, the results for quasi-identical
maps are of particular relevance.
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Interest in synchronization is easily motivated due to its
ubiquitous nature and its relevance to a number of physical
[1–3], chemical[4], biological [5], and ecological systems
[6]. The first documented observation of synchronization
dates back to Huygens and his pendulum clocks in 1665. In
the last decade there has been considerable interest generated
in chaotic synchronization since the work of Pecora and Car-
roll [7,8]. Apart from being an interesting scientific problem,
chaotic synchronization is deemed to be of technological im-
portance as in the field of secure communications[9]. Recent
books [10,11] and a review article[12] give an exhaustive
historical background and document advances in the field of
synchronization.

In this Rapid Communication we present analytical con-
siderations that enable one to obtain parameter bounds on the
chaotic synchronization domains for identical and quasi-
identical systems(small parameter mismatch) under unidi-
rectional and bidirectional couplings. Furthermore, one of
the criteria introduced does not require explicit knowledge of
the mapping function in order to predict bounds on the syn-
chronization region. Since in experiments one can convert a
continuous data stream to a discrete set using return maps,
our approach could allow one to eliminate large domains of
parameter space where synchronization is precluded and fo-
cus on the exploration of parameter regions of interest
(where synchronization may be attained).

Two unidirectionally coupled maps defined by the follow-
ing set of equations:

xn+1 = fasxnd, s1d

yn+1 = fasynd − gsxn − ynd, s2d

are considered for our discrete dynamics. Herea is the bi-
furcation parameter of the map(there may be a set of such
parameters), andg is the coupling strength. Due to the cou-
pling term in the slave system[Eq. (2)], at times the system

may exhibit blow-out instabilities[13]. To eliminate such
problems in our numerical calculations, an artificial reset of
the slave dynamics to randomly chosen values within the
chaotic attractor is imposed wheneveryn crosses a predeter-
mined threshold in state space. However, it needs to be em-
phasized that the artificial reset is a transient feature that is
only required for a finite number of iterations after the cou-
pling is switched “ON”. Therefore it has no effect on the
asymptotically synchronized chaotic trajectories. Since the
criteria developed to predict the domains of synchronization
entail using asymptotic behavior, they are independent of the
resetting procedure.

We define the error functionen=xn−yn. Subtracting Eq.
(2) from Eq. (1), and subsequent factorization, yields

en+1 = fGasxn,ynd + ggen, s3d

where

Gasxn,ynd =
fasxnd − fasynd

en
. s4d

Our condition for reducing the parameter space to be ex-
plored is thatg satisfy the inequality

− 1 −Ga
max, g , 1 − Ga

min, s5d

where Ga
min;minhGasxn,ynd, given a, and for all sxn,ynd

with n sufficiently large} and Ga
max;maxhGasxn,ynd, given

a, and for allsxn,ynd with n sufficiently large}.
If g is chosen outside the range determined by Eq.(5) it is

impossible to attain synchronization. The proof of this state-
ment follows.

First, consider the right-hand side of inequality Eq.(5),
which determines an upper bound condition ong

g , 1 − Ga
min. s6d

If Eq. (6) does not hold, i.e.,gù1−Ga
min, then by defini-

tion of Ga
min, we have that
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g + Gasxn,ynd ù 1, s7d

for all sxn,ynd with n sufficiently large.
Next consider the left-hand side of inequality Eq.(5),

which determines a lower bound condition ong

g . − 1 −Ga
max. s8d

If Eq. (8) does not hold, i.e.,gø−1−Ga
max, then by defi-

nition of Ga
max we have

− g − Gasxn,ynd ù 1 s9d

for all sxn,ynd with n sufficiently large.
Notice that the conditions expressed by Eqs.(7) and (9)

are exclusive, in the sense that a giveng can only satisfy one
of them. Furthermore, Eq.(7) implies thatGasxn,ynd+g.0,
while Eq. (9) ensuresGasxn,ynd+g,0. Thus we have that
the values ofg, which either violate Eq.(6) or violate Eq.
(8), satisfy, for allsxn,ynd with n sufficiently large, the con-
dition expressed by the inequality

uGasxn,ynd + gu ù 1, s10d

which, according to Eq.(3), impedes synchronization.
Hence, we have shown unequivocally that outside the range
of values forg determined by Eq.(5), synchronization is
precluded. However, it should be emphasized that ifg
does satisfy the inequalities of Eq.(5) synchronization is not
guaranteed.

Notice that since in Eq.(5) we invoke the minimum and
maximum over all the values ofGasxn,ynd for n sufficiently

large, it is a condition on the asymptotic dynamics. A further
reduction on the parameter space can be obtained if the in-
equality Eq.(5) is relaxed for a set of instances of measure 0
asn→`.

In Figs. 1(a) and 2(a) we show, as a testing ground, that
Eq. (5) provides acriterium for parameter space reduction
susceptible to synchronization for the chaotic dynamics of
the logistic fxn+1=axns1−xndg and cubicsxn+1=b−axn+xn

3d
maps. For these maps,Gasxn,ynd=af1−sxn+yndg and
Gasxn,ynd=sxn

2+xnyn+y2d−a, respectively. The bounds
(dashed lines) were determined from the correspondingGa

min

and Ga
max. We refer to this procedure as “method 1.” In the

figures we also show the numerically calculated synchroni-
zation regions for the two maps subjected to unidirectional
coupling.

Our main interest in Eq.(5) is its relevance to experi-
ments where one assumes the nonavailability of the func-
tional form of the map. Notice that wheng=0, i.e., for the
case of uncoupled dynamics, Eq.(4) is given as

Gausxn,yndug=0 =
xn+1 − yn+1

xn − yn
, s11d

which is an expression that can be calculated directly from
the experimental data. Using Eq.(11), the extremal values
for eacha of the functionGausxn,yndug=0 can be determined.
Subsequently, one may look for constantsC1 and C2 that
satisfy the following conditions:

FIG. 1. The region denoted by black dots corresponds to the
extent of parameter space where total synchronization is attained
(numerically) for logistic maps subjected to(a) unidirectional and
(b) bidirectional couplings. The synchronization domains shown
correspond to asymptotic behavior. We present only the parameter
region where the value of the map parametera leads to chaotic
dynamics. The values of the control parameter corresponding to
periodic windows in the bifurcation diagram were intentionally re-
moved. Analytical bounds predicted by using method 1 and method
2 are also shown.

FIG. 2. The region denoted by black dots corresponds to the
extent of parameter space where total synchronization is attained
(numerically) for cubic maps subjected to(a) unidirectional and(b)
bidirectional couplings. The synchronization domains shown corre-
spond to asymptotic behavior. We present only the parameter region
where the value of the map parametera leads to chaotic dynamics,
the other parameter for the map is fixed atb=0.5. The values of the
control parameter corresponding to periodic windows in the bifur-
cation diagram were intentionally removed. Analytical bounds pre-
dicted using method 1 and method 2 are also shown.
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C1 ; maxhuGa
maxug=0 for all a sfor chaotic regiondj,

s12d

C2 ; minhuGa
minug=0 for all a sfor chaotic regiondj.

s13d

It is reasonable to assume that the functionG for the chaotic
dynamics attains less extreme values, largest and smallest,
for the coupled casesgÞ0d than for the uncoupled scenario
sg=0d. Using Eq.(5), the appropriateC1 andC2 would then
satisfy the inequality

− 1 −C1 ø − 1 −Ga
max, g , 1 − Ga

min ø 1 − C2. s14d

Equation (14) provides us with asecond criteriumfor
parameter space reduction for synchronization which is par-
ticularly suitable for experiment. One can envisage two dif-
ferent scenarios for Eq.(14).

(i) If the search for chaotic synchronization is desired for
a fixed value of the bifurcation parametera, one can estimate
Ga from the experimental data and select its maximum and
minimum values.

(ii ) If the search for chaotic synchronization is desired for
a finite domain of parameters an experimental bifurcation
diagram needs to be constructed. One estimatesC1 and C2
using the bifurcation parametersa that yield the most ex-
tremal values of the functionGa.

We should emphasize that for both the above two sce-
narios one calculatesGa with g=0 using the dynamical evo-
lution of a single system initialized at different initial condi-
tions. This property may be of great advantage for particular
experimental setups.

The bounds obtained for the logistic and cubic maps by
means of a numerical implementation of the second scenario,
which we label as “method 2,” are shown in the figures as
solid lines. A good set of statistics on the calculated values of
Ga using different sets of initial conditions was required for
the proper estimation ofC1 andC2. The values −1−C1 and
1−C2 delimit the parameter space available for synchroniza-
tion. A comparison with the numerically calculated synchro-
nization regions, also shown in the figures, indicates that our
second analytic criterium provides a reasonable estimate for
the domains of chaotic synchronization.

Our analysis can be easily extended to maps with bidirec-
tional coupling given by

xn+1 = fasxnd + gsxn − ynd, s15d

yn+1 = fasynd − gsxn − ynd, s16d

wherea is the bifurcation parameter of the map andg is the
coupling strength. Similar to the unidirectional case, an arti-
ficial reset of the dynamics was imposed wheneverxn or yn
crossed a predetermined threshold in state space.

Following the same procedure as for the unidirectional
case yields the following bounds for the bidirectional case:

− 1 −C1

2
ø

− 1 −Ga
max

2
, g ,

1 − Ga
min

2
ø

1 − C2

2
.

s17d

Figure 1(b) and Fig. 2(b) show the numerically calculated
synchronization regions for the two maps subjected to bidi-
rectional coupling. The bounds obtained using the two meth-
ods described before are plotted and again are in agreement
with numerical simulations.

Our line of reasoning can be applied to the case of two
unidirectionally coupled nonidentical(parameter mismatch)
maps defined by the following set of equations:

xn+1 = fasxnd, s18d

yn+1 = fa+Dasynd − gsxn − ynd, s19d

a anda+Da are the parameters of the master and the slave
maps, respectively, andg is the coupling strength. Resetting
of the slave dynamics is performed as for the identical maps.
Our method for nonidentical maps is valid for maps where a
function existsgsynd such that fa+Dasynd= fasynd+gsyndDa.
However, if such a factorization is not possible andDa!1, it
suffices to truncate the expansion offa+Da in Da at the linear
term of Da. Following the protocol established for the iden-
tical maps and usingGasxn,ynd defined in Eq.(4) yields

en+1 = fGasxn,ynd + ggen − gsyndDa. s20d

Taking the absolute value of the preceding expression and
using the triangle inequality gives

uen+1u ø uGasxn,ynd + guuenu + ugsynduuDau. s21d

Assuming quasisynchronization(where two systems are
considered quasisynchronized if for largen, uxn−ynu,e
wheree!1), in the asymptotic limituen+1u<uenu. Taking this
last relation as an equality, multiplying both sides of Eq.(21)
by uenu, and rearranging yields

uenuhuenu − uGasxn,ynd + guuenu − ugsynduuDauj ø 0. s22d

Since uenuù0, the term uenu− uGasxn,ynd+guuenu− ugsynduuDau
should be less than or equal to zero. A little algebra gives

uenu ø
ugsynduuDau

1 − uGasxn,ynd + gu
. s23d

Now we assume that the right-hand side of the preceding
inequality satisfies

ugsynduuDau
1 − uGasxn,ynd + gu

ø e, s24d

then

− 1 −Gasxn,ynd +
ugsynduuDau

e
ø g ø 1 − Gasxn,ynd

−
ugsynduuDau

e
. s25d

This expression furnishes upper and lower bounds of the
quasisynchronization region for nonidentical maps since it
relies on the inequality Eq.(24) which, if violated, impedes
quasisynchronization. It can be easily verified that the
bounds given by Eq.(25) reduce to the bounds given by Eq.
(5) for Da=0.
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Similar to the previous results, the bounds reduce by a
factor of two for the bidirectional coupling of quasi-identical
maps. It is evident from Eq.(25) that the bounds predicted
using the analytical considerations for the quasi-identical
casesDa!1d will be inside the bounds for the identical case
(due to the emergence of theugsynduuDau /e term). Therefore
the bounds of the identical case remain valid for the quasi-
synchronization region of the quasi-identical maps for both
unidirectional and bidirectional couplings. Another important
observation from Eq.(25) is that the larger the parameter
mismatchsDad, the smaller is the quasisynchronization re-
gion. This was also confirmed numerically(results not
shown).

To summarize, our results indicate that it is possible to
predict upper and lower bounds which enclose parameter re-
gions where synchronization may occur. Our approach relies

on simple analytic considerations which produce criteria, in
the form of parameter relations, for the selection of param-
eter space regions in which to explore for synchronization.
The proposed methodology is valid for synchronization of
identical and quasi-identical systems subjected to both uni-
directional and bidirectional linear coupling. Moreover, one
of the criteria is particularly suitable for online experimental
determination and may be implemented on the uncoupled
system of chaotic oscillators. The methodology we have pre-
sented may constitute an important tool for the experimen-
talists, allowing them to eliminate parameter domains where
total synchronization is precluded.
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