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Based on analytical considerations, we introduce criteria that enable us to encapsulate the parameter domains
for which chaotic synchronization in linearly coupled map systems may be attained. Our aim is to provide
means to readily determine parameter regions which preclude synchronization. This results in a significant
reduction of parameter space that one needs to explore. Our findings hold for both identical and quasi-identical
(small parameter mismatgimaps subjected to unidirectional and bidirectional coupling. As a testing ground
we present numerical calculations for the logistic and cubic maps which validate the predictive capability of
our approach. Our main contribution relies on the applicability of one of our criteria to experimental situations.
Since in real life it is almost impossible to construct two truly identical systems, the results for quasi-identical
maps are of particular relevance.
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Interest in synchronization is easily motivated due to itsmay exhibit blow-out instabilitieg§13]. To eliminate such
ubiquitous nature and its relevance to a number of physicgbroblems in our numerical calculations, an artificial reset of
[1-3], chemical[4], biological [5], and ecological systems the slave dynamics to randomly chosen values within the
[6]. The first documented observation of synchronizationchaotic attractor is imposed whenewgrcrosses a predeter-
dates back to Huygens and his pendulum clocks in 1665. Imined threshold in state space. However, it needs to be em-
the last decade there has been considerable interest generapddsized that the artificial reset is a transient feature that is
in chaotic synchronization since the work of Pecora and Carenly required for a finite number of iterations after the cou-
roll [7,8]. Apart from being an interesting scientific problem, pling is switched “ON”. Therefore it has no effect on the
chaotic synchronization is deemed to be of technological imasymptotically synchronized chaotic trajectories. Since the
portance as in the field of secure communicatii®@sRecent criteria developed to predict the domains of synchronization
books[10,1]] and a review articlg12] give an exhaustive entail using asymptotic behavior, they are independent of the
historical background and document advances in the field afesetting procedure.
synchronization. We define the error functior,=x,—Y,. Subtracting Eq.

In this Rapid Communication we present analytical con-(2) from Eq. (1), and subsequent factorization, yields
siderations that enable one to obtain parameter bounds on the _
chaotic synchronization domains for identical and quasi- €n+r1=[GalXn,Yn) + ¥len, 3
identical systemgsmall parameter mismatgtunder unidi-  where
rectional and bidirectional couplings. Furthermore, one of
the criteria introduced does not require explicit knowledge of Ga(X V) = M (4)
the mapping function in order to predict bounds on the syn- €,
chronization region. Since in experiments one can convert a
continuous data stream to a discrete set using return map |
our approach could allow one to eliminate large domains o _
parameter space where synchronization is precluded and fo- -1-Gi¥<y<1-G", (5)
zzxﬁe?; styrﬁihfﬁﬁi'féﬁﬂﬂnm?y Ezriﬂ"a?;ifd regions of INtereShere G =min{Gq(X,,Yr), given a, and for all (x,,y,)

Two unidirectionally coupled maps defined by the follow- With n sufficiently large and GZ'*'=maxGa(X,,Yn), given

Our condition for reducing the parameter space to be ex-
lored is thaty satisfy the inequality

ing set of equations: a, and for all(x,,y,) with n sufficiently large.

If yis chosen outside the range determined by(Eyjit is
Xne1 = Fa(Xp), (1) impossible to attain synchronization. The proof of this state-
ment follows.
- _ _ First, consider the right-hand side of inequality ES),
=T X ; 2 . ; L
Yne1 = falYn) = 70 = Y) @ which determines an upper bound conditionpn

are considered for our discrete dynamics. Haris the bi- y<1 _G;nin_ (6)

furcation parameter of the mggthere may be a set of such _
parameters andy is the coupling strength. Due to the cou- I Eq. (6) does not hold, i.e.y=1-G}", then by defini-
pling term in the slave systefieq. (2)], at times the system tion of GJ"", we have that
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FIG. 2. The region denoted by black dots corresponds to the

FIG. 1. The region denoted by black dots corresponds to thextent of parameter space where total synchronization is attained
extent of parameter space where total synchronization is attaineghumerically for cubic maps subjected (@) unidirectional andb)
(numerically for logistic maps subjected t@) unidirectional and  bidirectional couplings. The synchronization domains shown corre-
(b) bidirectional couplings. The synchronization domains shownspond to asymptotic behavior. We present only the parameter region
correspond to asymptotic behavior. We present only the parametgyhere the value of the map parameteleads to chaotic dynamics,
region where the value of the map paramedeleads to chaotic  the other parameter for the map is fixedbat0.5. The values of the
dynamics. The values of the control parameter corresponding teontrol parameter corresponding to periodic windows in the bifur-
periodic windows in the bifurcation diagram were intentionally re- cation diagram were intentionally removed. Analytical bounds pre-

moved. Analytical bounds predicted by using method 1 and methodicted using method 1 and method 2 are also shown.
2 are also shown.

large, it is a condition on the asymptotic dynamics. A further
v+ G (X Yn) = 1, (7) reduction on the parameter space can be obtained if the in-
equality Eq.(5) is relaxed for a set of instances of measure 0
asn—oo,
In Figs. Xa) and Z2a) we show, as a testing ground, that
Eq. (5) provides acriterium for parameter space reduction
y>-1-GI' (8) susceptible to synchronization for the chaotic dynamics of
_ ~ the logistic [Xn;1=ax,(1=%,)] and cubic(X,.;=b—ax,+x’)
_IfEq. (S%acxioes not hold, i.e.y<-1-G" then by defi- maps. For these mapsG,(x,y,)=all-(x,+y,)] and
nition of G, we have GalXn, Yn)=0C+Xyn+y2)—a, respectively. The bounds
- y=Gy(XYr) = 1 (9)  (dashed linepwere determined from the correspondi@§"
) o and G]'®. We refer to this procedure as “method 1.” In the
for all (x,,yn) with n sufficiently large. figures we also show the numerically calculated synchroni-
Notice that the conditions expressed by E@.and(9)  zation regions for the two maps subjected to unidirectional
are exclusive, in the sense that a giveoan only satisfy one  ¢oypling.
of them. Furthermore, Eq7) implies thatG,(x,,y,) +y>0, Our main interest in Eq(5) is its relevance to experi-
while Eg. (9) ensuresG,(X,,Yn)+y<0. Thus we have that ments where one assumes the nonavailability of the func-
the values ofy, which either violate Eq(6) or violate EQ.  tional form of the map. Notice that whep=0, i.e., for the
(8), satisfy, for all(x,,y,) with n sufficiently large, the con- case of uncoupled dynamics, Ed) is given as
dition expressed by the inequality
17 Ynt1

|Ga(xn:yn) + Y| =1, (10
Ga (Yoo = 2= (11)

which, according to Eq.(3), impedes synchronization. a U Ynly=0= X = VYn
Hence, we have shown unequivocally that outside the range
of values fory determined by Eq(5), synchronization is
precluded. However, it should be emphasized thatyif Wwhich is an expression that can be calculated directly from
does satisfy the inequalities of E@) synchronization is not the experimental data. Using E€l1), the extremal values
guaranteed. for eacha of the functionG, (xn,yn)|Fo can be determined.

Notice that since in Eq5) we invoke the minimum and Subsequently, one may look for constais and C, that
maximum over all the values @&,(x,,y,) for n sufficiently  satisfy the following conditions:

for all (x,,y,) with n sufficiently large.
Next consider the left-hand side of inequality E&),
which determines a lower bound condition gn
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C,=max Gg‘aﬂ);o for all a (for chaotic regiody}, Figure Xb) and Fig. 2b) show the numerically calculated
synchronization regions for the two maps subjected to bidi-

(12 rectional coupling. The bounds obtained using the two meth-
- min , , ods described before are plotted and again are in agreement
C, = min{ GJ""|,, for all a (for chaotic regioj}. with numerical simulations.
(13 Our line of reasoning can be applied to the case of two

. . unidirectionally coupled nonidenticgparameter mismatgh
It is reasonable to assume that the funci®for the chaotic maps defined by the following set of equations:

dynamics attains less extreme values, largest and smallest,

for the coupled caséy+ 0) than for the uncoupled scenario Xnr1 = Fa(Xp), (18)
(y=0). Using Eq.(5), the appropriat&€; andC, would then
satisfy the inequality Yne1= FasnalYn) = Y% = Yn), (19

-1-C;<-1-G®<y<1-GJ"<1-C,. (14  aanda+Aa are the parameters of the master and the slave
maps, respectively, angis the coupling strength. Resetting

Equation (14) provides us with asecond criteriumfor of the slave dynamics is performed as for the identical maps
parameter space reduction for synchronization which is par: y P pS-

. , . . = Our method for nonidentical maps is valid for maps where a
ticularly swtaple for experiment. One can envisage two dif function existsg(y,) Such thatf..a(ye)=fa(yr) +g(y)Aa.
ferent scenarios for Eq14). H £ such a factorization | i Dl <1 it

(i) If the search for chaotic synchronization is desired for OWEVET, I Such a factorization IS not possibie )|

a fixed value of the bifurcation parametgrone can estimate suffices to truncate the expansionfgfs, in Aa at the linear

G, from the experimental data and select its maximum ande™m of Aa. Following the protocol established for the iden-
m?nimum values tical maps and usin@,(X,,Y, defined in Eq(4) yields

(ii) If the search for chaotic synchronization is desired for €441 = [Ga(Xny Vi) + Y1E, — g(yn)Aa. (20)
a finite domain of parameters an experimental bifurcation
diagram needs to be constructed. One estim@ieandC,  Taking the absolute value of the preceding expression and
using the bifurcation parameteesthat yield the most ex- Uusing the triangle inequality gives
tremal values of the functio,.

We should emphasize that for both the above two sce- [€neal < 1Galxny) + vllenl + lolynAal. 29
narios one calculates, with y=0 using the dynamical evo- Assuming quasisynchronizatiaiwhere two systems are
lution of a single system initialized at different initial condi- considered quasisynchronized if for large |x,—y,|<e
tions. This property may be of great advantage for particulawheree<1), in the asymptotic limite,,,| = |e,|. Taking this
experimental setups. last relation as an equality, multiplying both sides of Ez{)

The bounds obtained for the logistic and cubic maps byby |e,|, and rearranging yields
means of a numerical implementation of the second scenario,
which we label as “methrz)d 2,” are shown in the figures as |enl{[€n] = |Galxn,yn) + Vllenl — lalyn)l|Aal} < 0. (22)
solid I_mes. _A good set of statistics on .the calculated \{alues o8ince |e)| =0, the terml|e,|—|G.(%,,Vn) + vllenl - |a(yn)||Aal
G, using different sets of initial conditions was required for should be less than or equal to zero. A little algebra gives
the proper estimation of; andC,. The values -1€; and
1-C, delimit the parameter space available for synchroniza- NE l9(yn)lAa]
tion. A comparison with the numerically calculated synchro- L |Ga(XnYn) + A
nization regions, also shown in the figures, indicates that our ) ) )
second analytic criterium provides a reasonable estimate fgloW we assume that the right-hand side of the preceding
the domains of chaotic synchronization. inequality satisfies

Our analysis can be easily extended to maps with bidirec- lg(yn)||Aal

tional coupling given by 1= G0y 7] <€,
1% X Yn) T Y
Xna1 = Fa(Xp) + ¥(X0 = Vi), (15)

(23)

(24)

then

=T = Y(Xq = Yn) 16 A
. .yn 1 - aYn) = Y%~ Yn) - (16) C1-Gy Xy + M < y=1-G,(x,y)
wherea is the bifurcation parameter of the map apds the €
coupling strength. Similar to the unidirectional case, an arti- lg(yn)||Aal
ficial reset of the dynamics was imposed whenexgor y, - . (25)
crossed a predetermined threshold in state space. €
Following the same procedure as for the unidirectional Thijs expression furnishes upper and lower bounds of the
case yields the following bounds for the bidirectional case: quasisynchronization region for nonidentical maps since it
-1-c, -1-GM™ 1 _Ggin 1-C, relies_ on the in_eql_JaIity Eq24) which, if_violate_d_, impedes
< < . quasisynchronization. It can be easily verified that the
2 2 2 2 bounds given by Eq25) reduce to the bounds given by Eq.

(17)  (5) for Aa=0.

<y<
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Similar to the previous results, the bounds reduce by @n simple analytic considerations which produce criteria, in
factor of two for the bidirectional coupling of quasi-identical the form of parameter relations, for the selection of param-
maps. It is evident from Eq25) that the bounds predicted eter space regions in which to explore for synchronization.
using the analytical considerations for the quasi-identicalrhe proposed methodology is valid for synchronization of
case(Aa<1) will be inside the bounds for the identical case jyantical and quasi-identical systems subjected to both uni-

(due to the emergence of thg(y,)||Aal/e term). Therefore o ctional and bidirectional linear coupling. Moreover, one
the bounds of the identical case remain valid for the quasiyg o ¢ iteria is particularly suitable for online experimental
synchronization region of the quasi-identical maps for bothd terminai d be impl ted . led
unidirectional and bidirectional couplings. Another important etermination and may be implemented on the uncouple
observation from Eq(25) is that the larger the parameter system of chaotic pscnlator_s. The methodology we hav_e pre-
mismatch(Aa), the smaller is the quasisynchronization re-Sented may constitute an important tool for the experimen-
gion. This was also confirmed numericallyesults not talists, allowing them to eliminate parameter domains where
shown). total synchronization is precluded.

To summarize, our results indicate that it is possible to . _ .
predict upper and lower bounds which enclose parameter re- Financial support from CONACyT, México, is gratefully

gions where synchronization may occur. Our approach relie&cknowledged.
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